DASS Good: Explainable Data Mining of Spatial Cohort Data

نویسندگان

چکیده

Developing applicable clinical machine learning models is a difficult task when the data includes spatial information, for example, radiation dose distributions across adjacent organs at risk. We describe co-design of modeling system, DASS, to support hybrid human-machine development and validation predictive estimating long-term toxicities related radiotherapy doses in head neck cancer patients. Developed collaboration with domain experts oncology mining, DASS incorporates human-in-the-loop visual steering, data, explainable AI augment knowledge automatic mining. demonstrate two practical stratification report feedback from experts. Finally, we design lessons learned this collaborative experience.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

data mining rules and classification methods in insurance: the case of collision insurance

assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...

15 صفحه اول

Onto Explicative Data Mining: Exploratory, Interpretable and Explainable Analysis

Data mining systems are commonly applied to obtain a set of novel, potentially useful, and ultimately interesting patterns from a given (large) data set [1]. This can be achieved using exploratory methods, e. g., utilizing descriptive data mining techniques like methods for association rule mining [2] or subgroup discovery, e. g., [3], [4]. While the resulting patterns are typically interpretab...

متن کامل

Fuzzy Spatial Data Mining

A fuzzy spatial data mining technique has been developed to extract relationships describing relative position of classes of objects from raster images. Several different rule forms are described which represent different types of directional relationships between classes of objects. The method has been tested with hand-generated, synthetic, and sonar imagery.

متن کامل

Spatial Data Mining

Explosive growth in geospatial data and the emergence of new spatial technologies emphasize the need for automated discovery of spatial knowledge. Spatial data mining is the process of discovering interesting and previously unknown, but potentially useful patterns from large spatial databases. The complexity of spatial data and intrinsic spatial relationships limits the usefulness of convention...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Graphics Forum

سال: 2023

ISSN: ['1467-8659', '0167-7055']

DOI: https://doi.org/10.1111/cgf.14830